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ABSTRACT: Enantiomerically enriched cyclobutanes are
constructed by a three-component process in which t-butyl
(E)-2-diazo-5-arylpent-4-enoates are treated with Rh2(S-
NTTL)4 to provide enantiomerically enriched bicyclobu-
tanes, which can subsequently engage in homoconjugate
addition/enolate trapping sequence to give densely
functionalized cyclobutanes with high diastereoselectivity.
This three-component, two-catalyst procedure can be
carried out in a single flask. Rh2(S-NTTL)4-catalyzed
reaction of t-butyl (Z)-2-diazo-5-phenylpent-4-enoate
gives the Büchner cyclization product in excellent
enantioselectivity.

Stereochemically rich cyclobutanes are prevalent subunits in
natural products with diverse biological activity.1 A number

of methods have been developed for cyclobutane synthesis,2

including photochemical [2 + 2] cycloadditions,1c,d,3,4 catalyzed
[2 + 2] cycloadditions,4,5 cyclobutanone syntheses via ketenes,6

ring expansion of cyclopropylcarbinyl precursors,7 and cyclo-
butanes CH activation.8 Despite advances, there remains a need
for new approaches to functionalized cyclobutanes.
Bicyclobutanes are intriguing precursors to functionalized

cyclobutanes9 that display unusual reactivity as a consequence
of their unusual bonding and high strain energy (63.9 kcal/
mol).10 However, the synthetic applications of bicyclobutanes
have been relatively limited. In a striking series of papers, Wipf
has shown that bicyclobutane derivatives are capable of catalyst-
promoted ring expansion reactions,11a formal [2 + 2]
cycloadditions,11b and Alder-ene reactions.11c−e These exam-
ples illustrate how complexity can be rapidly generated in
strain-releasing reactions of bicyclobutanes.
We envisioned that cyclobutanes could be constructed via

bicyclobutane intermediates with the multi-component process
shown in Scheme 1, in which an α-allyl-α-diazocarbonyl
compound (A) is treated with a chiral catalyst to provide an
enantiomerically enriched bicyclobutane (B). We envisioned
that intermediate B could subsequently engage in homoconju-
gate addition to give enolate (C) and subsequent enolate
trapping to give densely functionalized cyclobutanes (D).
To realize Scheme 1, a challenge was to develop a protocol

for homoconjugate addition of organometallic nucleophiles to
bicyclobutanecarboxylates. In seminal studies, Gaoni showed
that cuprate reagents can add across the central C−C bond of
1-sulfonyl bicyclobutanes.12 The diastereoselectivity for such
processes was variable. Moreover, analogous reactions of other

bicyclobutane derivatives were unknown. While bicyclobutane-
carboxylates have been known since 1959,13 homoconjugate
additions to unsubstituted bicyclobutanecarboxylates had been
limited to additions of thiolate and alkoxide nucleophiles.14

Also critical for the enantioselective bicyclobutanation in
Scheme 1 is the ability to engage carbenes from A in
intramolecular cyclopropanation in preference to intramolecu-
lar β-hydride migration to give E.15 Bicyclobutane carboxylates
were first prepared from ethyl α-allyl-α-diazoacetate in seminal
work by Ganem.16 However, β-hydride migration was a
significant side reaction. In recent years, our group15 and that
of Hashimoto17 have developed intermolecular Rh-catalyzed
transformations of α-alkyl-α-diazoesters that tolerate β-hydro-
gens, including reactions that produce cyclopropenes, cyclo-
propanes, dioxolanes, tetrahydrofurans, and functionalized
indoles. Low temperatures (−78 °C) and bulky carboxylate
ligands are key to the success and the dramatic suppression of
β-hydride migration.15

Our success with intermolecular cyclopropanation led us to
question if enantiomerically enriched bicyclobutanes could be
prepared via intramolecular cyclopropanation. To develop a
system that would function in subsequent homoconjugate
addition reactions with Grignard reagents, we focused on the
preparation of tert-butyl bicyclobutanecarboxylates which were
expected to be resistant toward nucleophilic attack at the ester
carbonyl. In the course of our studies, Davies18 very recently
reported the first enantioselective intramolecular cyclopropa-
nation to yield bicyclobutanecarboxylates. In this elegant study,
the catalyst Rh2(R-BTPCP)4 was used to achieve bicyclobuta-
nation in 61−74% yield and up to 94% ee. Davies’ system is
most effective for methyl or ethyl (E)-2-diazo-5-arylpent-4-
enoates. The method described herein is complementary, as it
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Scheme 1. Multicomponent Cyclobutane Synthesis
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functions most efficiently with the corresponding tert-butyl
esters as required for subsequent homoconjugate addition.
The development of an enantioselective bicyclobutanation

procedure began with (E)-2-diazo-5-arylpent-4-enoates, which
are readily prepared by alkylation of t-butyl acetoacetate with
the cinnamyl halides and subsequent diazo transfer. Building on
earlier experience with enantioselective intermolecular reactions
of α-alkyl-α-diazoesters,15 we screened the bicyclobutanation of
1a using dirhodium carboxylates with N-imido-tert-leucinate
ligands.19 An optimization study (see Supporting Information)
revealed that Rh2(S-NTTL)4 in toluene at −78 °C is effective
for bicyclobutane formation, providing (S,S)-2a in 83% yield,
and 95% ee. As shown in Table 1, tert-butyl (E)-2-diazo-5-

arylpent-4-enoates 1a−g with aromatic halogen, CF3, nitrile,
ester and ether substituents were productive substrates under
Rh2(S-NTTL)4-catalyzed conditions to give bicyclobutane
products in 76−88% yield and 91−95% ee. Bicyclobutane 2h,
with an ortho-methoxy substitutent, was formed with high
enantioselectivity (94% ee) but a more modest 65% yield.
Likewise, the α-naphthyl substituted 2i was formed in 90% ee

and 67% yield. tert-Butyl (E)-2-diazo-6-phenylhex-4-enoate
gave the benzyl substituted 2j in 80% yield but 71% ee.
Comparison of the Rh-catalyzed reactions of alkene stereo-

isomers 1k and 1l provided mechanistic insight. The (E)-
isomer 1k gave bicyclobutane 2k in 80% yield and 73% ee. In
low yield (8% by 1H NMR), the (Z)-isomer 1l also gave 2k,
along with inseparable dienes from β-hydride migration. The
stereoconvergent formation of 2k rules out a concerted
cyclopropanation mechanism for 1l. It is likely that zwitterionic
F is an intermediate from the reaction of 1l, and possibly a
common intermediate from the reaction of 1k. Similarly, (Z)-
alkene 1m provided 15% of the bicyclobutane 2athe same
diastereomer obtained from (E)-alkene 1a. Again, the stereo-
convergence supports a zwitterionic intermediate from (Z)-
alkene 1m. Interestingly, the major product from 1m was the
Büchner product20 (+)-3, obtained in 69% yield and 99% ee.
We next studied the addition reactions of 2a with Grignard

reagents (Table 2). The uncatalyzed addition of PhMgBr in

Et2O gave only traces of diastereomers 4 upon acidic quench
(entry 1). Conditions of Gaoni12 (CuI in Et2O) gave 4 in only
8% yield (entry 2). Neither CuCN nor CuBr•SMe2 promoted
the reaction under similar conditions (entries 3,4). After a
number of Cu-sources, ligands and solvents were screened, it
was found that CuBr•SMe2 (30 mol %), PBu3 (1.2 equiv) and
THF provide a catalyst system that is highly effective. When 2a
was combined for 30 min with two equivalents of PhMgBr or
MeMgCl, cyclobutanes 4 and 5 were obtained in 88% and 90%
yield, respectively. The same conditions with less MeMgCl (1.5
equiv) gave 5 in a somewhat lower 75% yield (entry 7).
Likewise, 5 was obtained in 83% yield with less catalyst (10 mol
% CuBr•SMe2/40 mol % PBu3), (entry 8). Given the low cost
of the catalyst and nucleophiles, we continued with 30 mol %
copper and 2 equiv of Grignard reagents.
As shown in Table 3, a one-flask, two-catalyst procedure was

developed for the three-component preparation of enantiomeri-
cally enriched cyclobutanes from (E)-2-diazo-5-arylpent-4-
enoates, Grignard reagents and electrophiles. While toluene
was the best solvent for the bicyclobutanation, it was
detrimental to the conjugate addition. Thus, a solvent swap
was conducted by simply removing toluene in vacuo prior to the
conjugate addition. In this manner, cyclobutane product 4 was
obtained in 80% yield from 1a and as a 1.1:1 epimer at the C1
position. With a subsequent step (15 h), 4 could be readily
improved to 21:1 dr using catalytic tBuOK in THF. Other

Table 1. Enantioselective Bicyclobutanation

aee determined for the alcohol from DIBAL reduction of 16, Table 3.
bDiene products from β-hydride migration predominated and were
inseparable from 2k. The yield of 2k from 1l was estimated by 1H
NMR.

Table 2. Optimization of Homoconjugate Addition
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Grignard reagents such as MeMgCl, EtMgCl, BnMgCl, p-
fluorophenylmagnesium bromide and p-methoxyphenylmagne-
sium bromide afforded cyclobutane products 5, 11−14 in 68−
82% yields. In each case, the product dr could be improved to
≥17:1 by epimerization with tBuOK. Substituted α-cinnamyl-α-
diazoacetates were also tolerated by this one-flask procedure, as
illustrated by the preparation of 15 and 16. α-Diazoketone 1n
also participated in sequential bicyclobutanation/homoconju-
gate addition to give 17 in 60% yield, albeit in 34% ee.
As noted above, the diastereomer ratios obtained upon acidic

quench differed from those obtained upon epimerization.14a It

was speculated that the sense of diastereoselectivity could be
reversed by using BHT as a sterically demanding proton source
(Scheme 2). Indeed, BHT quench gave 5 and 16 in 1:6 dr and
1:17 dr, respectively.

Upon conjugate addition, the resulting enolate products
could also be directly quenched with electrophiles to provide
cyclobutanes that contain quaternary stereocenters (Table 3).
Electrophiles included allyliodide, EtI, BnBr, PhSSPh, and 4-
bromobenzoyl chloride to give products 6−10 with 7:1−14:1
dr. X-ray crystallography established the absolute stereo-
chemistry of 10 as well as the bicyclobutane precursor 2a.
In conclusion, enantiomerically enriched cyclobutanes can be

constructed by a 3-component, 2-catalyst, single-flask process in
which (E)-2-diazo-5-arylpent-4-enoates are treated with Rh2(S-
NTTL)4 to provide enantiomerically enriched bicyclobutanes.
A subsequent sequence of Cu-catalyzed homoconjugate
addition/enolate trapping provides highly substituted cyclo-
butanes with high diastereoselectivity.
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